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Abstract
In this letter, we analyse two bidirectional sixth-order partial differential
equations, which are reductions in (1 + 1) dimensions of equations belonging
to the KP hierarchy. They have fourth-order and fifth-order Lax pairs,
respectively. We derive their Bäcklund transformations and, from the nonlinear
superposition formula, we can build their soliton solutions like a Grammian.
The interesting dynamics of these solitons is that they may describe not only the
overtaking collision but also the head-on collision of solitary waves of different
type and shape.

PACS numbers: 02.30.Jr, 02.30.Ik, 05.45.Yv

1. Reductions of two-component bilinear systems belonging to the KP hierarchy

The two integrable partial differential equations (PDEs) studied in this letter are reductions in
(1 + 1) dimensions of equations belonging to the KP hierarchy [1].

We consider the following two-component bilinear system [2](
D4

1 − 4D1D3 + 3D2
2

)
(τ0 · τ0) = 0 (1)((

D3
1 + 2D3

)
D2 − 3D1D4

)
(τ0 · τ0) = 0 (2)

as well as (
D4

1 − 4D1D3 + 3D2
2

)
(τ0 · τ0) = 0 (3)(

D6
1 − 20D3

1D3 − 80D2
3 + 144D1D5 − 45D2

1D
2
2

)
(τ0 · τ0) = 0. (4)
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Here, the subscripts of the bilinear operators correspond to the components of the vector
�x = (x1, x2, . . . , xn) while τ0 is a function of �x satisfying the condition

τ0(x1, x2, x3, x4, . . .) = τ0(x1,−x2, x3,−x4, . . .) (5)

imposed by the C∞ Lie algebra symmetry, and possessing the Taylor expansion with respect
to the even variables x2, x4, . . .

τ0(�x) = f (xodd) + 1
2x2

2g(xodd) + · · · . (6)

From the system (1)–(2), assuming that τ0 is independent of x4, we obtain the following
bilinear system in (1 + 1) dimensions(
D4

1 − 4D1D3
)
(f · f ) + 6fg = 0 (7)

(
D3

1 + 2D3
)
(f · g) = 0 f = τ0|x2=x4=···=0 g = ∂2τ0

∂x2
2

∣∣∣∣
x2=x4=···=0

(8)

which is equivalent to the coupled KdV-type PDEs (x3 ≡ t, x1 ≡ x) [1–4]

−4ut + 12uux + uxxx + 3vx = 0 u = ∂2

∂x2
Log f (9)

2vt + 6uvx + vxxx = 0 v = g/f (10)

and, by elimination of v, to the sixth-order scalar equation (u = zx) [5]

−8ztt + zxxxxxx − 2zxxxt + 18zxzxxxx + 36zxxzxxx + 72z2
xzxx = 0. (11)

This integrable PDE, which is of second order in time, is here called the bidirectional Satsuma–
Hirota (bSH) equation.

The similarity reduction z = V (x) − κ
16 t2 of equation (11) gives

V (5) + 18V ′V ′′′ + 9(V ′′)2 + 24(V ′)3 + κx + β = 0 (12)

which is related by setting V ′ = −y to the fourth-order non-autonomous ordinary differential
equation

y(4) − 18yy ′′ − 9y ′2 + 24y3 − αy2 − α2

9
y = κx + β (13)

given in the Cosgrove classification [6] and defining a new transcendent.
In the case of the stationary reduction z = V (x − ct), equation (11) can be identified with

equation (13) by setting y = −V ′ + c
9 , α = 8c, in the particular case κ = 0. As proved by

Cosgrove, its general solution is given in terms of hyperelliptic functions of genus two and,
in the degenerate case α = β = 0, it can be solved in terms of a pair of elliptic functions of
genus one.

On the other hand, setting z = ∂x1 Log τ0(�x)|x2=x4=···=0 in the system (3)–(4), it becomes
the (2 + 1)-dimensional PDE, called the CKP equation:

9zx1,x5 − 5z2x3 +
(−5z2x1,x3 − 15zx1zx3 + z5x1 + 15zx1z3x1 + 15

(
zx1

)3
+ 45

4

(
z2x1

)2)
x1

= 0
(14)(

z2x3 ≡ zx3x3 . . .
)
.

This represents either a generalization in two space dimensions [7] of the Kaup–Kupershmidt
(KK) equation by setting x1 = x, x3 = y, x5 = t or a generalization in two space dimensions
of the bidirectional KK (bKK) equation [8] by setting x1 = x, x5 = y, x3 = t .
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The lower dimension reductions are

• ∂x3τ0 = 0, x1 ≡ x, x5 ≡ 9t

D4
x(f · f ) + 6fg = 0 (15)(
D6

x + 16DxDt

)
(f · f ) − 90D2

x(f · g) = 0 (16)

equivalent to the fifth-order potential KK equation [9]

zt + zxxxxx + 15zxzxxx + 15(zx)
3 + 45

4 (zxx)
2 = 0 z = ∂x Log f. (17)

• ∂x5τ0 = 0, x1 ≡ x, x3 ≡ t(
D4

x − 4DxDt

)
(f · f ) + 6fg = 0 (18)(

D6
x − 20D3

xDt − 80D2
t

)
(f · f ) − 45D2

x(f · g) = 0 (19)

equivalent to the sixth-order bKK equation [8](
zxxxxx + 15zxzxxx + 15(zx)

3 − 15zxzt − 5zxxt + 45
4 (zxx)

2
)
x
− 5ztt = 0. (20)

In this letter, we analyse the dynamics of the soliton solutions of the equations (11) and
(20) which are especially interesting as they may describe the head-on collisions of solitary
waves of different shape and type. We also derive the analytical expression of their N-soliton
solutions in terms of a Grammian.

2. N-soliton solutions of the bSH equation

From the Bäcklund transformation (BT)

pt −
(

pxx − 3

4

p2
x

p
+

3

2
ppx + 3zxp +

1

4
p3

)
x

= 0 p = Z − z (21)

1

2
pxxxx +

5

3
zxxxp − pxpxxx

p
+

3

2
ppxxx + 2zxxpx + 2zxxp

2 − 3

4

p2
xx

p
+ 2zxpxx +

9

4

p2
xpxx

p2

+ pxpxx +
7

4
p2pxx + 2z2

xp − zx

p2
x

p
+ 4zxppx + zxp

3 − 15

16

p4
x

p3
+

15

8
pp2

x

+ p3px +
4

3
ztp +

1

16
p5 − λp = 0 (22)

where z and Z are two different solutions of equation (11), we have shown in [10] that this
equation possesses N-soliton solutions which are linked,as for the KK equation, to a Grammian

z(N) = ∂x Log f (N) (23)

f (N) = det

[∫
φiφj dx

]
1�i,j�N

. (24)

Here φi satisfies the fourth-order Lax pair [2](
∂4
x + 4u∂2

x + 4ux∂x + 2uxx + 4u2 + v
)
ψ = λψ (25)

(
∂3
x + 3u∂x + 3

2ux

)
ψ = ∂tψ (u, v solution of the system (9)–(10)) (26)

for u = v = 0, λ ≡ λi . Moreover, following a remark by Satsuma and Hirota [2], we verify
that equation (11) may also describe the collision of solitary waves of different type. Indeed,
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as the dispersion relation associated with the linear part of equation (11) is of second degree
in ω

F(ω, k) ≡ 8ω2 − k6 + 2ωk3 = 0 (27)

we have two types of solitary waves depending on the direction of propagation, with speed
v+ = k2/2 and v− = −k2/4.

The solitary wave propagating in the negative direction possesses a KdV-like profile given
by

u− = ∂2
x Log(1 + eθ−) θ− = kx + 1

4k3t + δ− (28)

and corresponds to the case where the system (9)–(10) degenerates (v ≡ 0) into the KdV
equation, while the solitary wave propagating in the positive direction is

u+ = ∂2
x Log

(
1 + 2 eθ+ + 1

2 e2θ+
)

θ+ = kx − 1
2k3t + δ+. (29)

Therefore, at the level of the two-soliton solution

u12 = ∂2
x Log f12 (30)

we have not only the solution described by expression (24), for N = 2,

f12 ≡ f
(++)

12 = 1 + 2(eθ1,+ + eθ2,+) +
1

2
(e2θ1,+ + e2θ2,+) + 4B12 eθ1,++θ2,+

+ A12(e2θ1,++θ2,+ + eθ1,++2θ2,+) +
A2

12

4
e2(θ1,++θ2,+) (31)

A12 = (k1 − k2)
2

(k1 + k2)2
B12 =

(
k4

1 + k4
2

)
(k1 + k2)2

(
k2

1 + k2
2

) (32)

but also the usual expression for the two-soliton solution of the KdV equation

f12 ≡ f
(−−)

12 = 1 + eθ1,− + eθ2,− + A12 eθ1,−+θ2,− (33)

and a new expression

f12 ≡ f
(+−)

12 = 1 + 2 eθ1,+ + eθ2,− +
1

2
e2θ1,+ + 2Ã12 eθ1,++θ2,− +

Ã2
12

2
e2θ1,++θ2,− (34)

Ã12 = 2k2
1 − 2k1k2 + k2

2

2k2
1 + 2k1k2 + k2

2

(35)

representing the head-on collision of KdV and cKdV solitary waves (figure 1).
At the level of the three-soliton solution

u123 = ∂2
x Log f123. (36)

We have four different types: the solution given by expression (24), for N = 3, and
representing the collision of three cKdV-type waves like equation (29); the three-soliton
solution of the KdV equation; and two new solutions representing the head-on collision of a
KdV wave with a cKdV-like wave, in the presence of either a KdV-like wave (figure 2) or a
cKdV-like wave (figure 3).

The explicit expressions of these solutions are given in appendix A.

3. N-soliton solution of the bKK equation

The (2+1)-dimensional equation (14) arises from the compatibility condition of the following
linear operators
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Figure 1. u
(+−)
12 (k1 = 0.7, k2 = 0.9).
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Figure 2. u
(+−−)
123 (k1 = 0.7, k2 = 0.7, k3 = 1).

L ≡ ∂x3 − ∂3
x1

− 3u∂x1 − 3
2ux1 (37)

M ≡ ∂x5 − ∂5
x1

− 5u∂3
x1

− 15
2 ux1∂

2
x1

− (
5u2 + 35

6 u2x1 + 15
9 zx3

)
∂x1

− 5uux1 − 5
3u3x1 − 15

18ux3 u = zx1 (38)

[L,M] = 0 ⇐⇒ ECKP(z) = 0 (39)

which act on the wavefunction φ(x1, x3, x5). Considering the following reduction
(u independent of x3)

u(x1, x3, x5) ≡ u(x1, x5) φ(x1, x3, x5) = eλx3φ(x1, x5)
(40)

x5 ≡ 9t x1 ≡ x λ constant
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Figure 3. u
(++−)
123 (k1 = 0.55, k2 = 0.8, k3 = 1).

we recover the third-order Lax pair [9] of the KK equation(
∂3
x + 3u∂x + 3

2ux

)
φ = λφ (41)(

∂5
x + 5u∂3

x + 15
2 ux∂

2
x +

(
5u2 + 35

6 uxx

)
∂x + 5uux + 5

3uxxx

)
φ = 1

9∂tφ (42)

[L,M] = 0 ⇐⇒ ut +
(
uxxxx + 15uuxx + 15u3 + 45

4 (ux)
2
)
x

= 0. (43)

When u is independent of x5

u(x1, x3, x5) ≡ u(x1, x3) φ(x1, x3, x5) = eλx5φ(x1, x3) x3 ≡ t x1 ≡ x (44)

we obtain the Lax pair [8] of the potential bKK equation (20)(
∂5
x + 5u∂3

x + 15
2 ux∂

2
x +

(
5u2 + 35

6 uxx + 15
9 zt

)
∂x

+ 5uux + 5
3uxxx + 15

18ut

)
φ = λφ u = zx (45)(

∂3
x + 3u∂x + 3

2 ux

)
φ = ∂tφ (46)

[L,M] = 0 ⇐⇒ EpbKK(z) = 0. (47)

Considering the Darboux transformation (DT) [11]

Z = ∂x Log f + z f =
∫ x

φ2 (48)

we obtain, by elimination of φ between the DT (48) and the linear equations (45)–(46) the
following BT

pt −
(

pxx − 3p2
x

4p
+

3

2
ppx + 3zxp +

1

4
p3

)
x

= 0 p = Z − z (49)

1

2
pxxxx +

5

3
zxxxp − 5

4

pxpxxx

p
+

3

2
ppxxx +

5

4
zxxpx +

5

4
zxxp

2 − 5

8

p2
xx

p
+

5

2
zxpxx +

5

2

p2
xpxx

p2
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+
5

4
pxpxx +

5

4
p2pxx +

5

2
z2
xp − 15

8
zx

p2
x

p
+

15

4
zxppx +

5

8
zxp

3 − 35
p4

x

p3

+
25

16
pp2

x +
5

8
p3px − 5

8

p3
x

p
+

5

6
ztp +

1

32
p5 − λ = 0. (50)

Here, equation (49) is identical to equation (21). Therefore, as for the PDE (11), we easily
deduce the nonlinear superposition formula (NLSF)

f12 = f0

∣∣∣∣
∫ x

φ2
1

∫ x
φ1φ2∫ x

φ1φ2
∫ x

φ2
2

∣∣∣∣ (51)

where φ1 and φ2 are solutions of the Lax pair (45)–(46) with respective spectral parameters
λ1 and λ2 and the potential z0 = ∂x Log f0 solution of the potential bKK equation (20). If
we choose as the seed solution f0 = 1, z12 = ∂x Log f12 represents the two-soliton solution
of equation (20) depending on the two different parameters λ1 and λ2. The NLSF for the
N-soliton solution is therefore as for the KK equation [12]

f (N) ≡ det

[∫
φiφj dx

]
1�i,j�N

(52)

where φi is the vacuum wavefunction, the solution of the Lax pair (45)–(46) for z = 0, λ = λi .
We can therefore easily construct the soliton solutions starting from the vacuum

wavefunction given by

φ(x, t) =
5∑

i=1

Ai epix+p3
i t p5

i = λ pi − pj �= 0 for i �= j (53)

where Ai are constant.
Choosing the particular solution

φ(x, t) = A epx+p3t + B eqx+q3 t p �= q (54)

we have on p and q, taking into account that p5 = q5, the following conditions

p4 + p3q + p2q2 + pq3 + q4 = 0 (55)

and

f =
∫ x

φ2 � 1 + 4
B

A

p

p + q
e(q−p)x+(q3−p3)t +

B2

A2

p

q
e2(q−p)x+2(q3−p3)t . (56)

(The sign � means that the previous relation is valid up to an exponential factor linear in x
and t.)

Setting in equation (55) p = ak and q = (1 + a)k, a solves the fourth degree algebraic
equation

5a4 + 10a3 + 10a2 + 5a + 1 = 0. (57)

Therefore, the ratio (q3 − p3)/(p − q) = −(q2 + qp + p2) may have two distinct values and
the speed of the one-soliton is either

v+ =
√

5(3 +
√

5)

10
k2 > 0 or v− =

√
5(−3 +

√
5)

10
k2 < 0 (58)

such that we have two different profiles (figure 4)

u
(1)
± = ∂2

x Log f ≡ ∂2
x Log

(
1 + 4 eθ± +

3 ± √
5

2
e2θ±

)
(59)

θ± = k(x − v±t) + δ δ = Log

(
B

A

p

p + q

)
.
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These two values for the speed agree with those we can obtain by solving the dispersion
relation associated with the linear part of equation (20)

F(ω, k) ≡ 5ω2 − k6 + 5ωk3 = 0 (60)

which is of second degree in ω.
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For the two-soliton solution we have three different possibilities, two of these representing
overtaking collisions (figure 5) and the third the head-on collision of solitary waves (figure 6).

4. Conclusion

The two integrable PDEs considered here are interesting not only because of the dynamics
of their soliton solutions, but also because of their relationship with a generalized Hénon–
Heiles Hamiltonian. Written in the form of two coupled KdV systems, the equations (11)
and (20) are related by stationary reduction to three Liouville integrable cases of the extended
quartic Hénon–Heiles Hamiltonian. The new links established in [13] between those two
coupled KdV systems and the others given by Baker [14] could help to integrate explicitly
with functions possessing the Painlevé property some cases, which until now, have only been
integrated in the Liouville sense.
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Appendix A. Explicit expressions of the three-soliton solutions for equation (11)

f
(−−−)

123 = 1 + eθ1,− + eθ2,− + eθ3,− + A12 eθ1,−+θ2,− + A13 eθ1,−+θ3,−

+ A23 eθ2,−+θ3,− + A12A13A23 eθ1,−+θ2,−+θ3,− (61)

f
(+−−)

123 = 1 + 2 eθ1,+ + eθ2,− + eθ3,− +
1

2
e2θ1,+ + 2Ã12 eθ1,+ + θ2,− + 2Ã13 eθ1,+ + θ3,− + A23 eθ2,−+θ3,−

+
Ã2

12

2
e2θ1,++θ2,− +

Ã2
13

2
e2θ1,++θ3,− + 2A23Ã12Ã13 eθ1,++θ2,−+θ3,−

+
1

2
A23Ã

2
12Ã

2
13 e2θ1,++θ2,−+θ3,− (62)

f
(++−)
123 = 1 + 2 eθ1,+ + 2 eθ2,+ + eθ3,− +

1

2
e2θ1,+ +

1

2
e2θ2,+ + 4B12 eθ1,++θ2,+ + 2Ã13 eθ1,++θ3,−

+ 2Ã23 eθ2,++θ3,− + A12(e2θ1,++θ2,+ + eθ1,++2θ2,+) +
Ã2

13

2
e2θ1,++θ3,− +

Ã2
23

2
eθ2,++2θ3,−

+ 4B12Ã13Ã23 eθ1,++θ2,++θ3,− +
A2

12

4
e2θ1,++2θ2,+ + A12Ã13Ã23 eθ1,++θ2,++θ3,−

× (Ã13 eθ1,+ + Ã23 eθ2,+) +
1

4
A2

12Ã
2
13Ã

2
23 e2θ1,++2θ2,++θ3,− (63)

f
(+++)

123 = 1 + 2(eθ1,+ + eθ2,+ + eθ3,+) +
1

2
(e2θ1,+ + e2θ2,+ + e2θ3,+)

+ 4(B12 eθ1,++θ2,+ + B13 eθ1,++θ3,+ + B23 eθ2,++θ3,+) + A12(e
2θ1,++θ2,+ + eθ1,++2θ2,+)

+ A13(e2θ1,++θ3,+ + eθ1,++2θ3,+) + A23(e2θ2,++θ3,+ + eθ2,++2θ3,+)

+ C123 eθ1,++θ2,++θ3,+ +
A2

12

4
e2θ1,++2θ2,+ +

A2
13

4
e2θ1,++2θ3,+ +

A2
23

4
e2θ2,++2θ3,+

+ 2 eθ1,++θ2,++θ3,+(A12A13B23 eθ1,+ + A12B13A23 eθ2,+ + B12A13A23 eθ3,+)

+
1

2
A12A13A23 eθ1,++θ2,++θ3,+(A12 eθ1,++θ2,+ + A13 eθ1,++θ3,+ + A23 eθ2,++θ3,+)

+
1

8
A2

12A
2
13A

2
23 e2(θ1,++θ2,++θ3,+) (64)
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Aij = (ki − kj )
2

(ki + kj )2
Ãij = 2k2

i − 2kikj + k2
j

2k2
i + 2kikj + k2

j

Bij = k4
i + k4

j

(ki + kj )2
(
k2

i + k2
j

)
C123 = 8

k4
1k

4
2

(
k4

1 + k4
2

)
+ k4

1k
4
3

(
k4

1 + k4
3

)
+ k4

2k
4
3

(
k4

2 + k4
3

) − 6k4
1k

4
2k

4
3

(k1 + k2)2
(
k2

1 + k2
2

)
(k1 + k3)2

(
k2

1 + k2
3

)
(k2 + k3)2

(
k2

2 + k2
3

)
(65)

Appendix B. Explicit expression of the two-soliton solution for equation (20)

u
(±±)

12 = ∂2
x Log f

(±±)

12 (66)

f
(±±)
12 = 1 + 4(eθ1,± + eθ2,±) +

3 ± √
5

2
(e2θ1,± + e2θ2,±) + B

(±±)
12 eθ1,±+θ2,±

+ 4A
(±±)

12 (e2θ1,±+θ2,± + eθ1,±+2θ2,±) + A
(±±)

12

2
e2(θ1,±+θ2,±) (67)

A
(±±)
12 = 3 ± √

5

2

(
k1 − k2

k1 + k2

)2 k2
1 − 1∓√

5
2 k1k2 + k2

2

k2
1 + 1∓√

5
2 k1k2 + k2

2

(68)

B
(±±)

12 = 16
(
k4

1 − 3∓√
5

4 k2
1k

2
2 + k4

2

)
(k1 + k2)2

(
k2

1 + 1∓√
5

2 k1k2 + k2
2

) (69)

u
(+−)
12 = ∂2

x Log f
(+−)

12 (70)

f
(+−)

12 = 1 + 4(eθ1,+ + eθ2,−) +
3 +

√
5

2
e2θ1,+ +

3 − √
5

2
e2θ2,− + B

(+−)

12 eθ1,++θ2,−

+ 4A
(+−)
12

(
3 +

√
5

2
e2θ1,++θ2,− +

3 − √
5

2
eθ1,++2θ2,−

)
+ A

(+−)
12

2
e2(θ1,++θ2,−) (71)

A
(+−)
12 = k4

1 − 5−√
5

2 k3
1k2 + 3 3−√

5
2 k2

1k
2
2 − (5 − 2

√
5)k1k

3
2 + 7−3

√
5

2 k4
2

k4
1 + 5−√

5
2 k3

1k2 + 3 3−√
5

2 k2
1k

2
2 + (5 − 2

√
5)k1k

3
2 + 7−3

√
5

2 k4
2

(72)

B
(+−)
12 = 16

(
k4

1 + 3−√
5

4 k2
1k

2
2 + 7−3

√
5

2 k4
2

)
k4

1 + 5−√
5

2 k3
1k2 + 3 3−√

5
2 k2

1k
2
2 + (5 − 2

√
5)k1k

3
2 + 7−3

√
5

2 k4
2

(73)

θ1,± = k1(x − v1,±t) + δ1,± v1,± =
√

5(±3 +
√

5)

10
k2

1 (74)

θ2,± = k2(x − v2,±t) + δ2,± v2,± =
√

5(±3 +
√

5)

10
k2

2 (75)
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